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Abstract 

Any quantum-mechanical problem with 0(2,1) as SGA (spectrum-generating algebra) is 
considered as a single oscillator related to a new quantisation. In the case of small 
interactions the problems can be solved within essentially Fock representations while in 
the case of strong attractive potentials they can be solved only within the essentially 
non-Fock representations of the new commutation relations. Explicit realisations of a 
system of n oscillators through para-Bose operators have been constructed. 

1. Introduction 

In 1953 Green (Green, 1953) introduced the para-Fermi and para-Bose 
quantisation which generalise the Fermi and Bose quantisation respec- 
tively. I t  has been proved (Ryan & Sudarshan, 1963) that the algebra of  
the para-Fermi quantisation with 2n generators is isomorphic to O(2n + 1) 
algebra. 

A new method of  quantisation has been recently proposed (Kademova 
& Kraev, 1971a, b) consisting of  the following commutat ion relations: 

+ 

[ [ ~ ,  ~-j]5, ~'~]_ = 0, i , j ,  k = 1, 2 , . . . ,  n (1.1) 
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(which differ from the para-Fermi commutation relations only by the 
minus sign in the right-hand side of the first one) and the vacuum con- 
ditions 

+ 

~ IO) = O, o~  5slO) =pSuiO) (1.2) 
+ 

o~i, 5 s are the annihilation and creation operators respectively, p is a 
positive number--the order of the related statistics. The particle number 
operator is defined as 

+ 

�9 N ,  = t ( [ ~ , ,  ~ , ] -  - P) (1.3)  

It has been further shown (Kademova & Kraev, 1971c) that the algebra 
+ 

with 2n generators J l ,  ~-j (i, j = 1, 2 . . . .  , n) defined by the commutation 
relations (1.1) is isomorphic to O(2n, 1) algebra. 

For the case n = 1 it has been proved (Kademova & Kraev, 1971a) that 
the representation space contains states with only positive norms for any 
0 < p  < oo. This result has been supposed to hold (Kademova & Kraev, 
1971a, b, c) for n > 1 which, however, is not the case. Ohnuki et aL (1971) 
pointed out that the representation space of the commutation relations 
(1.1) combined with the vacuum conditions (1.2) for n > 1 contains some 
antisymmetric states with negative norms. 

Thus the case of a single oscillator (n = 1) is singled out by the existence 
of Fock representations containing vectors with only positive norms, 
while for the case of a system of more than one oscillator (n > 1) Fock 
representations with only positive norms of the states do not exist. 

Therefore if one uses the commutation relations (1.1) for quantising 
spin-half fields then one must use Fock representations with negative 
norms of some of the antisymmetric states or drop the vacuum conditions 
(1.2) and use essentially non-FocK representations--the infinite-dimensional 
unitary representations of O(2n, 1). 

One way of answering the question of the applicability of the quantisation 
scheme (1.1), without the vacuum conditions (1.2), is to see whether there 
are physical problems requiring essentially non-Fock representations of 
the commutation relations and whether the above-mentioned quantisation 
can be applied to such problems. 

It has been shown (Schroer & Swieca, 1970; Schroer, 1971) that in the 
case of strong stationary external interactions of quantised fields and the 
quantisation of m 2 < 0 field equations the introduction either of negative 
metric or of the breakdown of the vacuum condition is essentially necessary. 

Actually, all the quantum-mechanical problems which have O(2, 1) as a 
spectrum-generating algebra (SGA) (L~nik, 1967, 1968, 1969, 1970; 
Cordero & Ghirardi, 1971 ; Cordero et al. 1971 ; Barut & Bornzin, 1971) 
can be treated in terms of a single oscillator, i.e. in terms of a single pair of 

+ 

creation and annihilation operators . f i - , 5  satisfying the commutation 
relations (1.1). The problems with small interactions can be solved within 
the Fock representations of the new commutation relations (for n = 1) 
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while in the case of strong attractive potentials one must use essentially 
non-Fock representations of these commutation relations (for n = 1). 

2. 0(2,1) Algebra Representations and Number Operators 

Here we shall briefly review some properties of 0(2,1) algebra representa- 
tions and introduce corresponding particle number operators which will 
be used in the next section. 

As is well known, O(2,1) ~ SU(1,1) algebra is defined by the following 
commutation relations between its generators: 

d ,  (i = 1, 2, 3) 

[ ~ 1 ,  ~ 2 ] - -  = - - i ~ g 3 ,  [~r = i d l ,  [~r ~ l ] -  = i d 2  (2.1) 

It was shown (Kademova & Kraev, 1971c) that d i  can be expressed in 
+ 

terms of ~-  and : ,  satisfying (1.1) as follows: 
+ + + 

d ,  o~ + ~  ~'2 = - -  y - o~" d 3  = [~',____o~-]_ (2.2) 
2 ' 2i ' 2 

The Casimir operator of the algebra is 
+ + 

~-- = d32  - d ,  2 -~r = �88 ~ ,  Y ] 5  - 2[o~', o~-]+) (2.3) 

The single-valued unitary irreducible representations (UIR) of the 
SU(I, 1) group were first constructed and studied by Bargmann (1947), 
who used a basis of the representation space in which the compact generator 
(the generator d 3 of  the compact 0(2) subalgebra) was diagonal. The 
same representations were studied further (Mukunda, i967) in a basis in 
which a non-compact generator of 0(2,1) ,-, SU(1, 1) was diagonal. 

The representations of the SU(1,1) group in the standard Bargmann 
basis are split into the following classes depending on the values of the 
Casimir opera to r - -Y =j( j  + 1): 

(A) The discrete class representations D: + (D~-) are labelled by integer 
or half-integer values of the parameter j = - - ~ ,  -1,  3 ,  - 2  . . . .  , and the 
eigenvalues of the compact generator ~r are m = - j ,  - j +  1, ... (m = j ,  
j -  1 . . . .  ). For this class o f  representations the compact generator has a 
spectrum bounded below (above). 

(B) The continuous class representations: 

(a) The principal series Cj ~ 

j=--�89 + is, 
m =0 ,  • &2 . . . . .  (3=0)  f o r 0 < s  < o~ 
m --- :L-J2-, :~23 . . . . .  ( 8 = 1 )  f o r 0 < s < ~  

(b) The supplementary series 

- � 8 9  m =0 ,  +1 , •  . . . . .  
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For these two series of representations the eigenspectrum of the compact 
generator is not bounded either below or above. 

It is important for us that the O(2, l) ~ SU(1,1) algebra has hermitian 
representations (which are, however, not true representations of the 
SU(1, 1) group) for all the values o f j  < 0 for which the spectrum of the 
compact generator is bounded below m = - j ,  - j  + 1, .... These are exactly 
the Fock representations, labe!led by 0 < p  < 0% of the commutation 
relations (1,1) for n = 1 found in Kademova & Kraev (1971a). The eigen- 

+ + 

basis of the compact generator ~r = [ 5 ,  ~ ]_ /2  is (o~)"{0), n = 0, 1,2, 3 . . . .  
The value of the Casimir operator for a representation labelled by a fixed 
p is Y = (p/2)(p/2 - 1), i.e. p/2 = - j .  (The true representations of the 
SU(1,1) group are those labelled by integer p and can be realised in the 
Fock space of two Bose operators.) 

(i) For this class of representations of the algebra (0 < p  < m) the 
operator 

+ 

Np = ~r + J  = �89 ~ ] - - P )  (2.4a) 

has the eigenspectrum 0, 1, 2 . . . .  and coincides with the particle number 
operator. 

(ii) For the supplementary series and the principal series with 8 = 0 
the compact generator 

+ 

N ~- ~/3 - [~-' ~-]-  2 (2.4b) 

has the eigenspectrum 0, i l ,  ~2, .... 
(iii) For the principal series with ~ = i the operator 

4- 

N = d 3 + �89 = �89 o~]_ + 1) (2.4c) 

has the eigenspectrum 0, • • . . . .  , i.e. for the continuous class of represen- 
tations the operator N has an eigenspectrum not bounded below. It consists 
of all integer numbers (negative as well as positive). This is the case of the 
particle number operator for the 'strange particle representations' (Chaiken, 
1968). 

The above representations were considered (Mukunda, 1967) also in the 
eigenbasis of the non-compact generator. The eigenspectrum of the non- 

+ 
compact generator ~'~ = ( ~ - +  ~ ) / 2  always consists of the entire real 
line. While for the representations of the discrete class ~r has a non- 
degenerate eigenspectrum, for the representations of the continuous class 
its eigenspectrum is twice degenerate. 

3. On the Connection between the Method of SGA and the New 
Quantisation 

The idea of using the SGA for solving different quantum-mechanical 
problems (L~nik, 1967, 1968, I969, 1970; Cordero & Ghirardi, 1971; 
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Cordero et al., 1971 ; Barut & Bornzin, 1971) consists in finding realisations 
of some Lie algebra in terms of operators of the Hilbcrt space of the system 
considered and expressing the Hamittonian as a function of the generators 
of the algebra. The eigenspectrum of the Hamiltonian is found within a 
system of irreducible representations of the Lie algebra. It has been shown 
by the above authors that all quantum-mechanical problems that have 
been solved algebraically possess 0(2, 1) as SGA. Due to the isomorphism 

+ 

of 0(2, 1) with the algebra of the creation and annihilation operators Y ,  
~" of a single oscillator any of these quantum-mechanical problems can 
be treated as a single oscillator and the Hamiltonian H can be put in terms 
of the creation and annihilation operators 

+ . + 

~ ( H -  E) ~- ~{~, Y]_  q2 f l y  + yo~- + A (3.1) 

(Following Cordero & Ghirardi (1971) ~ is an arbitrary non-singular 
operator; ~, /3, >,, A are generallY energy-dependent coefficients) where 
withoat loss of generality one can assume/3 = 7'- 

The particular values of ~,/3 determine the possibility of transforming the 
right-hand side of equation (3.1) into either of the following forms" 

+ 

fq(H - d') ~ IF, F]_ (3.2a) 
2 

o r  
+ 

F + F  
f f ( H - ~ ) - >  2 

(up to factors and additive constants). 

(3.2b) 

+ 

As we know (Section 2) the operator [5 , -~]_ /2  has a discrete eigen- 
spectrum and coincides, up to an additive constant, with the particle 
number operator. Thus (3.2a) gives the discrete spectrum of the system, 

+ 

while (3.2b) gives the continuous one, since ( ~  + o~r)/2 always has a 
continuous eigenspectrum. 

Thus any quantum-mechanical problem with 0(2, 1) as SGA can be 
+ 

considered as a single oscillator (Y,  o~-). Different quantum-mechanical 
problems require only different representations of the commutation 
relations (1,1) for a single oscillator (n = 1). 

This can be illustrated by some simple examples: 

(i) Harmonic Oscillator 

The Hamiltonian of the harmonic oscillator in terms of Bose creation 
+ 

and annihilation operators a, a is 
+ 

H = hoo(aa + �89 (3.3a) 
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Using the realisation (Kademova & Kraev, 1971a) 
+ 

a 2 + a 2 

+ 

this Hamiltonian can be put in terms o f ~ -  and ~ satisfying (1.I) 
+ 

H = h~o[~', ~ ] _  = hoa(2Np +p) (3.3b) 

within the Fock representations p = �89 and ~ (Kademova & Kraev, 1971a). 

(ii) Non-relativistic Hydrogen Atom 

The problem is described by equation (3.1) with 

c~ = - � 8 8  f l = y = � 8 8  A=2z 

and is solved within the following essentially Fock representations of a 
single oscillator (1.1) labelled by p = 2, 4, 6, .... 

['or instance, the discrete spectrum which, in the usual notations, is 
given as 

- -  Z 2 

@ - 2 ( n , +  l +  1) a' nr=0,  1, 2 . . . .  , / = 0 ,  i ,2  . . . .  

is expressed directly in terms of  the eigenvalues of the particle number 
operator Np within the above representations 

g 2 

where p = 2(/+ I) = 2, 4, 6, ... and the spectrum of Ns is 0, I, 2 . . . . .  
All the other relativistic and non-relativistic problems (the SchrSdinger 

equation for: the harmonic oscillator potential plus an extra cubic force, 
the hydrogen atom potential plus an extra cubic force etc.; the Klein- 
Gordon equation for the hydrogen atom; the second-order Dirac equation 
for the hydrogen atom, etc.) considered by the above authors can be solved 
within the Fock representations of the commutation relations (1.1) for 
n = l .  

It has been shown by Barut & Bornzin (t971) that the Klein-Gordon 
and the second-order Dirac equation can be solved within the discrete class 
representations of 0(2,1) algebra (i.e., they can be treated in terms of a 

+ 

single oscillator o~, .~  within the Fock representations) only in the case 
of a small coupling constant. When the coupling constant is very large 
these problems can be solved only by using the principal series of representa- 
tions of 0(2,1) (Barut & Bornzin, 1971) (i.e., one must treat the problem 

+ 

in terms of a single oscillator o~, o~ using essentially non-Fock representa- 
tions). 
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For instance, for the case of the Klein-Gordon equation with a strong 
attractive potential, the discrete eigenspectrum of the system is expressed 

+ 

in terms of the eigenspectrum of the operator As = [o ~ ,  o~]-/2, which 
coincides with the particle number operator up to an additive constant 
p = 8/2 (3 = 0 or 1), and is not bounded below within the 'strange particle 
representations', 

m 

where e is the coupling constant and A~ is the eigenspectrum of As. 
Thus the quantum relativistic problems with very strong attractive 

potentials require essentially the use of non-Fock representations even for 
the lowest case of the new quantisation (1. I) (for n = I). 

This makes one hope that the non-Fock representations of the com- 
mutation relations (1.1) for n > 1 can have some physical applications. 

4. Para-Bose Realisation of  the New Commutation Relations 

In Kademova & K raev (1971 a) explicit real i sations of the commutati on 
+ 

relations (1.1) for a single oscillator (o ~ ,  o~) were given as follows: 
+ 

a 2  + a 2  

Y = - 2 '  ~ = - - 2  
and 

+ + +  

~" = ab, Y = ab 
+ + 

where a, a, b, b are Bose operators. 

(4.1) 

(4.2) 

(4.3) 
[J~,  ~-A- = 0) 

+ ) i # j  
[Y i ,  ~ A -  0 

Using (4.1) one realises the Fock representations ef  the commutation 
relations (1.1) labelled by p = �89 and ~ in the Fock space of a single Bose 
operator, and using (4.2) all the Fock representations with integer p = 1, 

+ + 

2, 3 . . . .  are realised in the Fock space of  two Bose operators. (If a, a, b, b 
in (4.1) and the symmetrized (4.2) are taken as para-Bose operators then 

+ 

o~ and o ~ again satisfy the commutation relations (I. I).) 
It is to be stressed here that the above realisations are valid only for a 

single oscillator. For more than one oscillator the operators o ~  = al2/2 
+ + + 

and ~ i  = aj2/2, i, j =  I, 2 . . . . .  n, (a, a t being para-Bose operators) 
satisfy not the commutation relations (I. 1) but 

+ 

[�89 ~,%L, 0%]_ = - ~ ,  
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i.e., two different oscillators commute. The algebra determined by the 
commutation relations (4.3) is isomorphic to the direct product of n 
0(2, 1) algebras. 

Here we would like to give an explicit realisation of a system ofn  oscilla- 
tors satisfying the commutation relations (1.1). 

In Kademova (1970), Kademova & Kfilnay (1970), Kademova & 
K raev (1970, 1971d) a general method for realising the para-Fermi algebra 
operators as polynomials of para-Bose and para-Fermi operators of 
arbitrary order of parastatistics has been worked out. It will be shown here 
that, using the finite-dimensional representations of the para-Fermi 
algebra with 2n generators, one can construct polynomials of para-Bose 
operators (Bose operators, in particular) which satisfy the new commutation 
relations (I. 1). 

Let a matrix representation of  2n para-Fermi operators be given, i.e. 
+ 

the 2"P-dimensional matrices F=, FO, ~, ~7 = 1, 2 . . . . .  n, satisfying the follow- 
ing commutation relations: 

+ 

[�89 F~]_, FT]_ = S#e F~ (4.4) 
[[F~, F/31_, Fr]_ = 0 

Using these matrices, we construct the following 2n polynomials of the 
+ + 

para-Bose operators at, a j, bk, bz, i, j, k, l = I, 2 . . . . .  2 "p, of arbitrary order 
of parastatistics q)i" 

+ + 

5 ~  = �89 a j]+ - [at, b j ]+ )  
+ + + + ( 4 . 5 )  

~-~ = �89 bjl+ - [bl, as]+) 
Obviously 

+ 

It is easily shown that these polynomials satisfy the new commutation 
relations (1.1)and therefore are their realisation. 

Indeed 
+ § H- + 

[o~ ,  o~1_  = �89 F/3]_)u([a~, ai]+ - [bt, bj]+) 
and 

+ + 

[ ~, o~fi]_ = --~([F~, F~]_)u([a J, a~]+ - [b,, b j]+) 

From here and from (4.4) we get 
4- 4- + + 

[�89 ~ # l - ,  g~,] -  = -([�89 Fr F~,l_)u�89 aj]+ - [at, bjl+) 
+ + 

= -S~ ,  �89 aa]+ - [at, bj]+) 
= -3~ ,  o ~  

and 
[[~,, ~1_, ~-~1_ = 0 

i" We use the summation convention over the repeated indices. 
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Thus the above general procedure allows, knowing a particular rep- 
resentation of the para-Ferrai algebra, classes of representations to be 
found of  the new commutat ion relations (1.1). In other words, knowing 
some finite-dimensional hermitian representations of  the O(2n+ 1) 
algebra, one can construct some of the infinite-dimensional hermitian 
representations of the O(2n, 1) algebra. 

Such a particular realisation for the case n = p = q = I is 

+ + + + + 

= b l  a 2  - ai b 2 ,  ~ = b1 a2 - al b2 (4.6) 

For this case the realisations (4.1), (4.2), 

and 

+ 4- + 

= �89 ~ + ~a22), Y = �89 2 + ~a~ 2) 

+ + 4- 

~ -  = �89 2 + ea22), 3 -7 = �89 2 + ca22), e = • 

are simpler. However, the realisation (4.6) is important since it allows a 
simple extension to the case n = 2 as follows. 

Let us use the matrix representation of two pairs of  Fermi operators 

/~176176 i ) ( i  ~ ~ i) 
F t =  0 (  0 0 + 0 1 

0 1 0 , F I =  0 0 

~0 0 0 - 0 0 

01 ) 0 0 
F 2 =  0 0 + 0 0 

0 0 ' F 2 =  0 0 

1 0 0 0 

Then the operators defined through the mapping 

al  
+ 4- + 

~=(ala2blb2)Fi|  a2], 

-b 2 
4- 

+ + 

(au ai, b~, b~, i = 1, 2, are Bose operators), namely 

4- + + 

29 

i = 1 , 2  

+ + 

Y l  =bla2+albz, ~71 =bla2+alb2 
+ + + + + 

j72=b2a2-atbl, Ya=baa2-albl 

(4.7) 

(4.8) 

(4.9) 
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satisfy the c o m m u t a t i o n  re la t ions  (1.I)  for  n =  2, i.e., they are  their  real isa-  
t ion in a space with a posi t ive metr ic  (the F o c k  space o f  four  Bose operators) .  
This  is a real isa t ion o f  some of  the hermit ian  representa t ions  o f  0(4 ,  1) 
a lgebra  in the Fock  space of  Bose opera tors .  
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